H=-d^2+12d+5

Simple and best practice solution for H=-d^2+12d+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-d^2+12d+5 equation:



=-H^2+12H+5
We move all terms to the left:
-(-H^2+12H+5)=0
We get rid of parentheses
H^2-12H-5=0
a = 1; b = -12; c = -5;
Δ = b2-4ac
Δ = -122-4·1·(-5)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{41}}{2*1}=\frac{12-2\sqrt{41}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{41}}{2*1}=\frac{12+2\sqrt{41}}{2} $

See similar equations:

| x-3.2=55 | | 55+x=150 | | X+2x=3-1 | | -86=(-8p)+2 | | x•7=16 | | 3(x+2)+2(x-1)=(5x+7) | | 2/3z+4=24-z | | -5y+6=26 | | 36=6-5b | | -6r=-2r | | -x-8=−x−8=−4x−23 | | z•7=16 | | 1=6(1—p) | | 1/2x=-3.5 | | -k-4=(-19) | | π/3(20-3h^2)=0 | | 9z-15=9-3z | | 7x+5=3x-3x+9+5 | | 48=8y-9 | | -2y-5+4y=-5+2y | | (π/3)(20-3h^2)=0 | | 31=(-3v)+10 | | 15x+6=5x+66 | | 5+8x=-67 | | 69-2x=3 | | 21=6-9n | | 1+-2x=1 | | 10x-1=61 | | -9-8v=(-25) | | (n-5)*(n-5)*(n-5)=0 | | 8y+4=8y-8+7y | | L5-L2=x |

Equations solver categories